Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

Identifieur interne : 001D07 ( Main/Exploration ); précédent : 001D06; suivant : 001D08

How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

Auteurs : Ülo Niinemets [Estonie] ; Zhihong Sun [Estonie]

Source :

RBID : pubmed:25399006

Descripteurs français

English descriptors

Abstract

Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size.

DOI: 10.1093/jxb/eru443
PubMed: 25399006
PubMed Central: PMC4321546


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.</title>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25399006</idno>
<idno type="pmid">25399006</idno>
<idno type="doi">10.1093/jxb/eru443</idno>
<idno type="pmc">PMC4321546</idno>
<idno type="wicri:Area/Main/Corpus">001F22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F22</idno>
<idno type="wicri:Area/Main/Curation">001F22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F22</idno>
<idno type="wicri:Area/Main/Exploration">001F22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.</title>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Butadienes (metabolism)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Environment (MeSH)</term>
<term>Hemiterpenes (metabolism)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Pentanes (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Sunlight (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Butadiènes (métabolisme)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Environnement (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Hémiterpènes (métabolisme)</term>
<term>Lumière du soleil (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Pentanes (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Butadienes</term>
<term>Carbon Dioxide</term>
<term>Hemiterpenes</term>
<term>Pentanes</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Butadiènes</term>
<term>Dioxyde de carbone</term>
<term>Hémiterpènes</term>
<term>Pentanes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Hybridization, Genetic</term>
<term>Models, Biological</term>
<term>Sunlight</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Environnement</term>
<term>Hybridation génétique</term>
<term>Lumière du soleil</term>
<term>Modèles biologiques</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25399006</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>841-51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/eru443</ELocationID>
<Abstract>
<AbstractText>Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. </AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<AffiliationInfo>
<Affiliation>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Zhihong</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>322603</GrantID>
<Agency>European Research Council</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013472" MajorTopicYN="N">Sunlight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">EMS61507</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CO2 response</Keyword>
<Keyword MajorTopicYN="N">dimethylallyl diphosphate</Keyword>
<Keyword MajorTopicYN="N">elevated [CO2]</Keyword>
<Keyword MajorTopicYN="N">isoprene emission</Keyword>
<Keyword MajorTopicYN="N">light sensitivity</Keyword>
<Keyword MajorTopicYN="N">temperature optimum</Keyword>
<Keyword MajorTopicYN="N">temperature response.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25399006</ArticleId>
<ArticleId IdType="pii">eru443</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/eru443</ArticleId>
<ArticleId IdType="pmc">PMC4321546</ArticleId>
<ArticleId IdType="mid">EMS61507</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Environ. 2013 Mar;36(3):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22998549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:407-436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Aug;79(4):597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24267746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):2001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Mar;98(3):1175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 May;5(5):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 2009 Apr;82(4):473-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):687-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 May;32(5):520-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19183288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Feb;1768(2):198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17125733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Dec;19(14):917-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):905-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21807886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Jul;84(3):658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Feb;29(2):212-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jan;101(1):5-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17921528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Dec;115(4):1413-1420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):993-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Feb 20;303(5661):1173-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Apr;38(4):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 May;30(5):654-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Jun;33(6):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2012 Mar;125(2):263-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21584787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May;165(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10411949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Apr;67(4):1026-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Aug;37(8):1965-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22431637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 May;166(1):273-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21380850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(1):55-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Aug;195(3):541-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22738087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Aug;51(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 May;129(1):269-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jan;34(1):113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Sep;139(1):485-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Dec;64(18):5509-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24153419</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<country name="Estonie">
<noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</noRegion>
<name sortKey="Sun, Zhihong" sort="Sun, Zhihong" uniqKey="Sun Z" first="Zhihong" last="Sun">Zhihong Sun</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D07 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D07 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25399006
   |texte=   How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25399006" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020